

^a Human Genetics Concepts and Applications

Fenth Edition

RICKI LEWIS

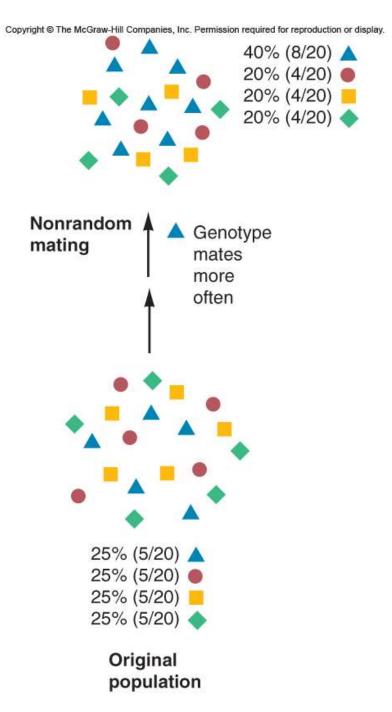
PowerPoint[®] Lecture Outlines Prepared by Johnny El-Rady, University of South Florida

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Conditions that Change Allele Frequencies

Five conditions change allele frequencies (and ultimately phenotypic frequencies)

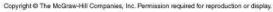
- 1) Nonrandom mating
- 2) Migration
- 3) Genetic drift
- 4) Mutation
- 5) Selection


Nonrandom Mating

- Nonrandom mating indicates that individuals of one genotype reproduce more often with each other
- Indeed, we marry people similar to ourselves about 80% of the time

Traits that influence our mate choice include:

- Physical appearance
- Ethnic or religious preferences
- Intelligence and shared interests


Nonrandom Mating Alters Allele Frequencies

Examples of Nonrandom Mating

Males fathering many children

- Arnold (South Africa)
 - Increase in frequency of a dominant dental disorder in the Cape population
- Genghis Khan (Asia)
 - 16 million men living today share his Y chromosome

Figure 15.2

Examples of Nonrandom Mating

Hopi Indians – Albinism

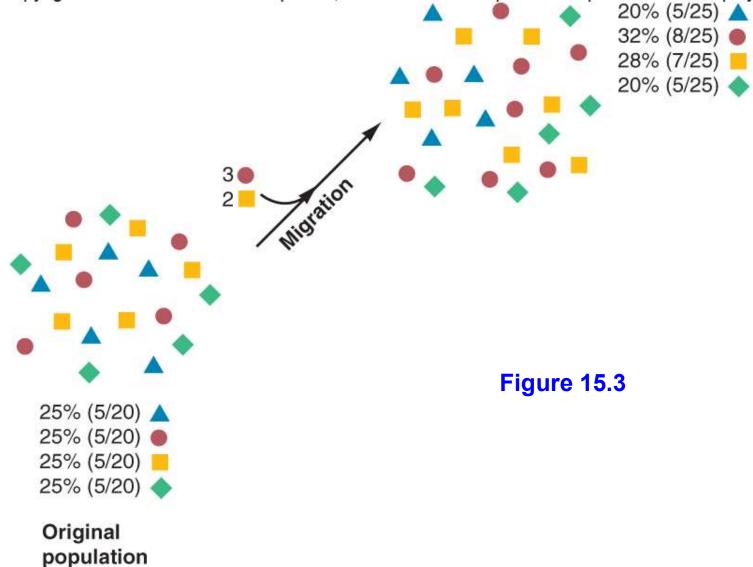
Ashkenazi Jews – Tay-Sachs disease

Consanguinity – Marriage between blood relatives

Endogamy – Marriage within a community

Migration

Individuals migrate and move genes from one area to another


- The addition or removal of alleles will alter the genotypic frequencies

Genetic effects of migration are reflected in current populations

Changes in allele frequency can be mapped across geographical or linguistic regions

Migration Alters Allele Frequencies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Clines

Clines are gradients in allele frequencies between successive neighboring populations

Can suggest patterns of migration

Example

- Prevalence of galactokinase deficiency

- An autosomal recessive disease that causes blindness

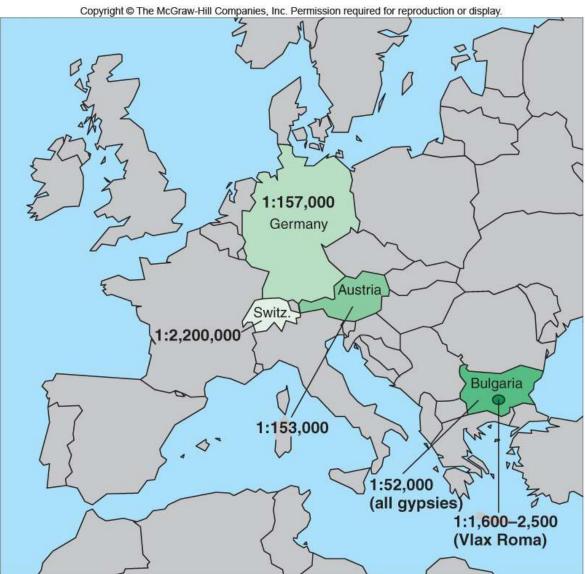


Figure 15.4

10

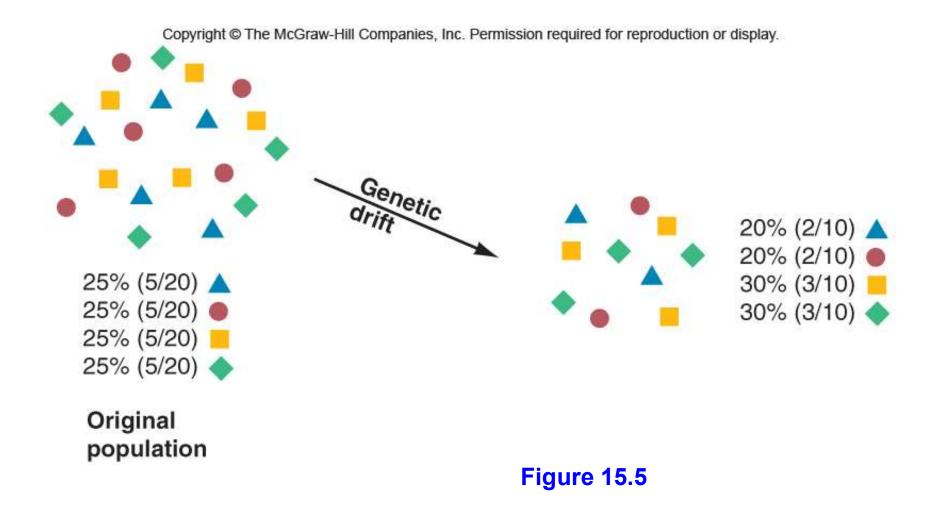
Clines

Clines may be either abrupt or gradual

Cline boundaries may be correlated to:

- Historical events
- Cultural differences
- Geographical barriers
- Language differences
- Patterns of migration

Genetic Drift


Genetic drift is the change in allele frequency when a small group separates from the larger whole

Caused by random sampling errors

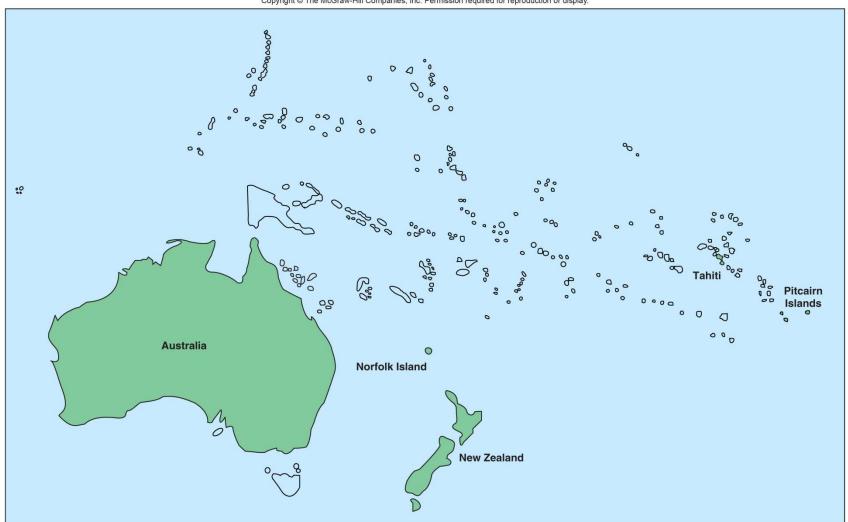
Allele frequency changes are unpredictable

More pronounced in small populations

Genetic Drift Alters Allele Frequencies

Genetic Drift

Events that create small populations enhance the effect of genetic drift


- Founding a new population
- Bottlenecks (natural disaster, famine)
- Geographic separation (islands)
- Cultural separation

Founder Effect

Occurs when a small group leaves home to found new settlements

The new colony may have different allele frequencies than the original population

- It may, by chance, either lack some alleles or have high frequency of others

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 15.1	Founder Populations		
Population	Number of Founders	Number of Generations	Population Size Today
Costa Rica	4,000	12	2,500,000
Finland	500	80–100	5,000,000
Hutterites	80	14	36,000
Japan	1,000	80–100	120,000,000
Iceland	25,000	40	300,000
Newfoundland	25,000	16	500,000
Quebec	2,500	12–16	6,000,000
Sardinia	500	400	1,660,000

Examples of Founder Effect

French Canadians of Quebec

- Have only 4/500 alleles for BRCA1 gene

Dunker community of Germantown, Penn.

- Descendants of German immigrants who came between 1719 and 1729

- Have different distribution of blood types than the German native and non-Dunker neighbor populations

Genetic Drift and Nonrandom Mating

Small population size increases the probability of homozygosity

Increases recessive phenotypes in population

Example

- Amish and Mennonite populations of Penn. marry predominantly within their religious groups

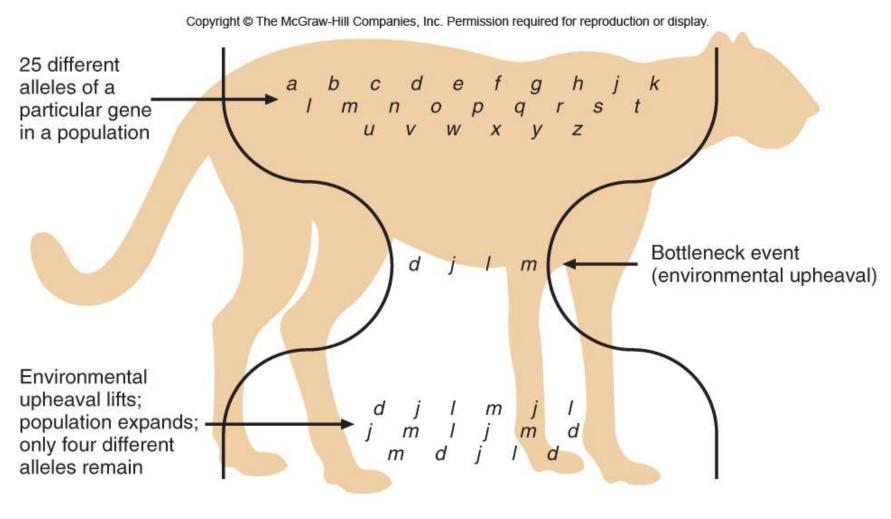
- Maintain their original small genetic pool
- Increased incidence of otherwise rare traits

Figure 15.7

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dr. Victor McKusick/Johns Hopkins University School of Medicine

Ellis-van Creveld syndrome


Population Bottlenecks

Occurs when a large population is drastically reduced in size

Rebounds in population size occur with descendants of limited number of survivors

- Therefore, new population has a much more restricted gene pool than the large ancestral population

Population Bottlenecks

Examples of Population Bottlenecks

Pingelapese people of Micronesia

- Bottleneck created by a typhoon

Cheetahs in S. and E. Africa

 Bottleneck created by changing habitats (after the most recent ice age) and mass slaughter by humans in the 19th century
Ashkenazi Jews

- Massacres and nonrandom mating between survivors contributed to high incidence of certain disorders

Examples of Population Bottlenecks

Table 15.2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 15.2	Autosomal Recessive Genetic Diseases Prevalent Among Ashkenazi Jewish Populations			
Disorder	МІМ	Signs and Symptoms (Phenotype)	Carrier Frequency	
Bloom syndrome	210900	Sun sensitivity, short stature, poor immunity, impaired fertility, increased cancer risk	1/110	
Breast cancer	113705, 600185	Malignant breast tumor caused by mutant <i>BRCA1</i> or <i>BRCA2</i> genes	3/100	
Canavan disease	271900	Brain degeneration, seizures, developmental delay, early death	1/40	
Familial dysautono	mia 223900	No tears, cold hands and feet, skin blotching, drooling, difficulty swallowing, excess sweating	1/32	
Gaucher disease	231000	Enlarged liver and spleen, bone degeneration, nervous system impairment	1/12	
Niemann-Pick disea type A	ase 257200	Lipid accumulation in cells, particularly in the brain; intellectual and physical disability, death by age 3	1/90	
Tay-Sachs disease	272800	Brain degeneration causing intellectual disability, paralysis, blindness, death by age 4	1/26	
Fanconi anemia typ	be C 227650	Deficiencies of all blood cell types, poor growth, increased cancer risk	1/89	

Mutation

Mutations are a major and continual source of genetic variation in populations

- Can introduce new alleles
- Can convert one allele to another

Mutation has a minor impact (most are silent) unless coupled with another effect such as small population size or selection

Mutations Alter Allele Frequencies

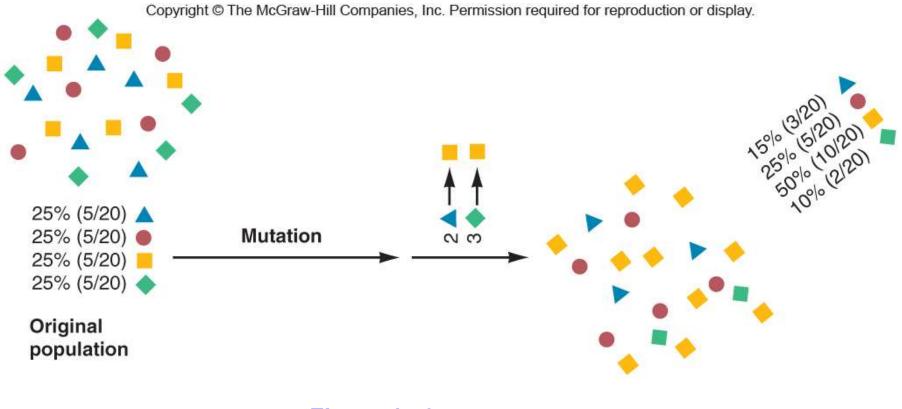


Figure 15.9

Mutation

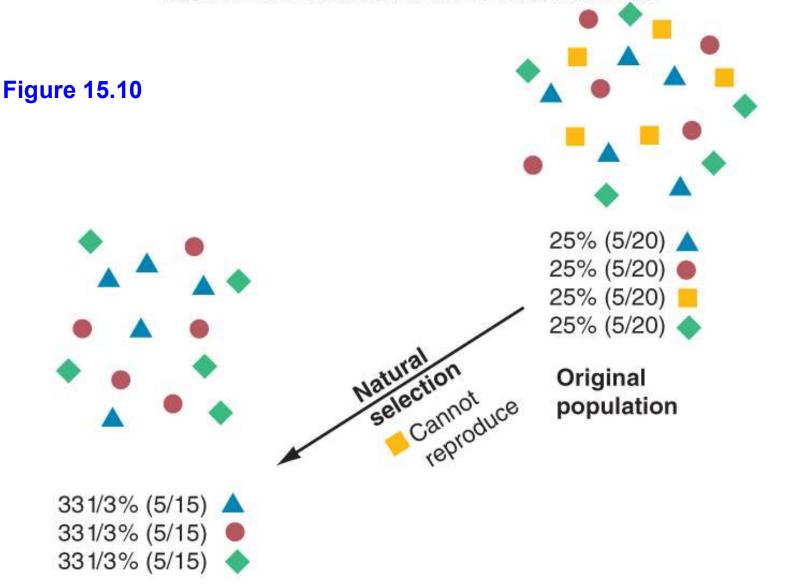
Selection eliminates deleterious alleles

However, harmful recessive alleles are maintained in heterozygotes and are reintroduced by mutations

Genetic load is the collection of recessive deleterious alleles present in a population

Natural Selection

Is the differential survival and reproduction of individuals with a particular genotype/phenotype


Negative selection = Banishment of a dangerous trait

Positive selection = Retaining an advantageous trait

Both lead to changes in allele frequencies

Natural Selection Alters Allele Frequencies

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Goodshoot/Alamy RF

Artificial Selection

Controlled breeding with the intent of perpetuating individuals with a particular phenotype <u>Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.</u>

Examples:

- Crop plants
- Pets

© Deanne Fitzmaurice/K&D Photography, Inc.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© The McGraw-Hill Companies, Inc./Barry Barker, photographer

Natural Selection and Tuberculosis

TB infections have historically swept across susceptible populations killing many

Natural selection operating on both the bacterial and human population has lessened the virulence of the infection

Recent resurgence reflects AIDS and increasing bacterial resistance to antibiotics

Bacterial Antibiotic-Resistance

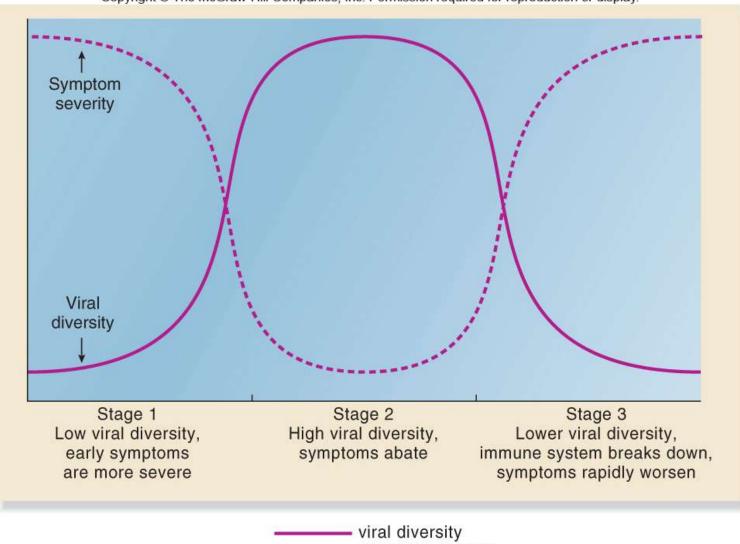
Bacteria become resistant in two ways:

- 1) Mutation passed from one bacterial generation to another by cell division
- 2) Groups of resistant genes are passed on transposons; they are transmitted from cell to cell by plasmids

A particularly dangerous strain is methicillinresistant *Staphylococcus aureus* (MRSA)

Natural Selection in HIV

- RNA or DNA viruses replicate often and errors are not repaired
- Viral mutations accumulate rapidly
- In HIV infection, natural selection controls the diversity of HIV variants within the human body as the disease progresses
- The human immune system and drugs to slow infection become selective agents
- Combinations of drugs that act in different ways are more effective


Initially the immune system identifies and eliminates many cells infected with HIV Mutations occur in the virus

- Viral mutations allowing increased replication or immune system evasion are favored
- Gradually the immune system of the infected person can no longer fight off the HIV infection

HIV infection progresses to AIDS when lack of an intact immune system leads to opportunistic infections

Now becoming chronic rather than lethal

Figure 15.14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

----- symptom severity

Balanced Polymorphism

Persistence of harmful recessive alleles due to heterozygotes

When two or more forces (environmental threat vs. harmful allele) act in different directions on alleles of a gene

Also called heterozygote advantage

- Have a reproductive advantage under certain conditions

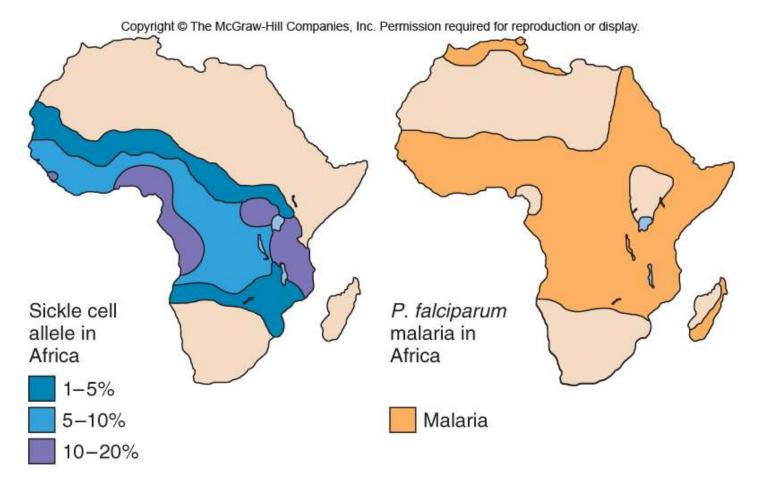
Balanced Polymorphism

Table 15.3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 15.3	Balanced Polymorphism				
Disease 1 (inherited, carrier)	Protects against	Disease 2	Because →	Mechanism	References
Sickle cell disease		Malaria		Atypical red blood cells cannot retain parasites	Section 12.2
G6PD deficiency		Malaria		Parasite cannot reproduce in atypical red blood cells	Section 12.5
PKU		Fungal infection in fetuses		Elevated phenylalanine inactivates fungal toxin	Sections 5.2, 10.4, 14.1, 15.6
Prion protein mutation		Transmissible spongiform encephalopathy		Prion protein cannot misfold in presence of infectious prion protein	Figure 10.22, section 12.5, Reading 10.1
CF		Diarrheal disease (cholera, typhoid fever)		Fewer chloride channels in intestinal cells prevent water loss	Sections 14.1, 14.3, Readings 2.2, 4.2
Smith-Lemli-Opitz syndrome		Cardiovascular disease		Lowered serum cholesterol	MIM 270400 (multiple birth defects, intellectual disability)

Sickle Cell Disease and Malaria


The beta hemoglobin gene exhibits balanced polymorphism

Sickle cell allele causes the recessive sickle cell anemia trait (when homozygous) and is therefore under negative selection

Sickle cell allele helps protect heterozygotes from malaria therefore under positive selection

Sickle Cell Disease and Malaria

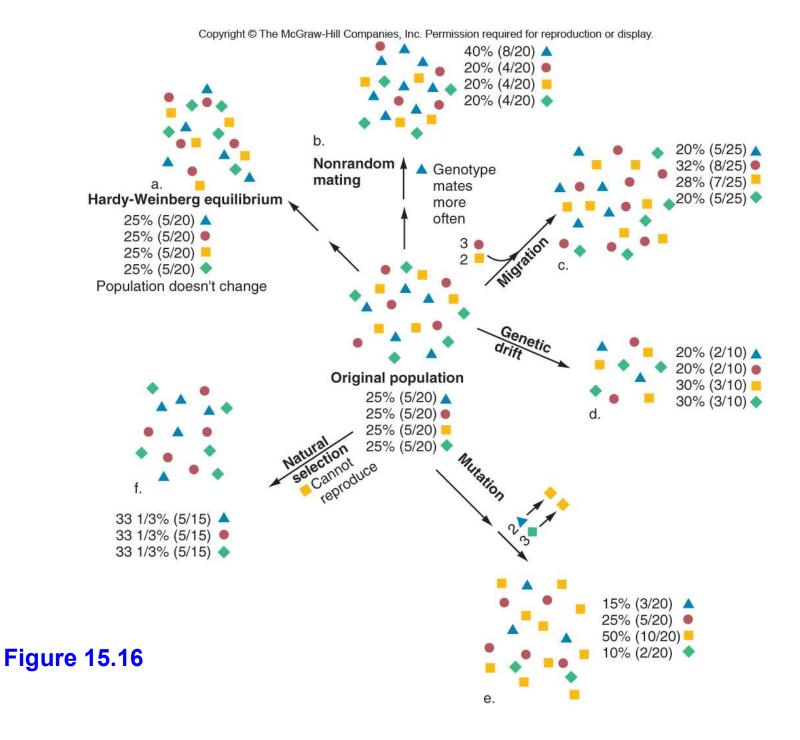
Figure 15.15

Prion Disease and Cannibalism

Kuru is an illness causing brain degeneration in the Foré people in New Guinea

The tribe practiced ritual cannibalism

Heterozygotes for a protein folding gene may protect from transmissible spongiform encephalopathies

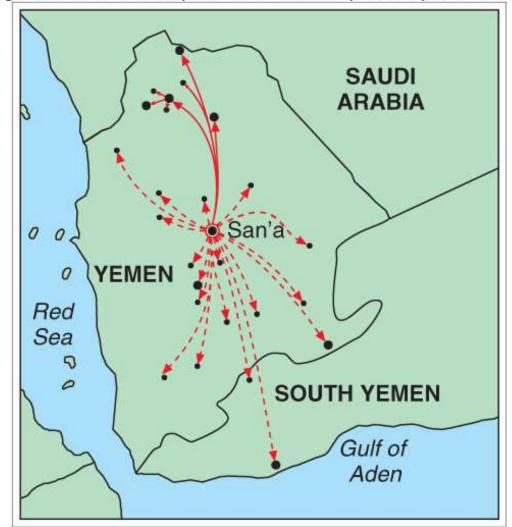

Cystic Fibrosis and Diarrheal Disease

Diarrheal diseases can be major killers CFTR protein affects chloride channels Cholera toxin causes chloride channels to open producing severe dehydration Typhoid fever requires a functional CFTR for bacteria to enter the cell Heterozygotes have some protection from these two bacterial diseases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

	orces that Change Allele equencies			
Mechanism of Allele Frequency Change Examples				
Nonrandom mating	Agriculture Cape population and Arnold Hopi Indians with albinism Genghis Khan's Y chromosome			
Migration	Consanguinity Galactokinase deficiency in Europe ABO blood type distribution Clines along the Nile and in Italy			
Genetic drift				
Founder effect	Norfolk Island mutineer descendants and migraine Disorders among Old Order Amish and Mennonites Afrikaners and porphyria variegata			
Population bottleneck	: Pingelapese blindness Cheetahs Pogroms against Ashkenazi Jews			
Mutation	Chapters 12 and 13			
Natural selection	Lactose intolerance Tibetan adaptation to high altitude TB incidence and virulence HIV infection Antibiotic resistance in bacteria Sickle cell disease and malaria Prion disease and cannibalism CF and diarrheal disease PKU and protection against fungal infection			

Table 15.4


Phenylketonuria (PKU)

The diversity of PKU mutations suggests that the disease has arisen more than once

- In most populations, point mutations in the PAH gene cause PKU
- However, all Yemeni Jews in Israel with PKU have a large deletion
- Records indicate that the deletion arose in San'a (the capital of Yemen)
 - It then spread among Yemenite Jews

Phenylketonuria (PKU)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Eugenics

The word **eugenics** was coined in 1883 by Sir Francis Galton to mean "good in birth" On a societal level, eugenics is the control of human reproduction with the intent of changing a population's genetic structure Positive eugenics = Promotes reproduction among those considered superior Negative eugenics = Interferes with reproduction of those judged inferior

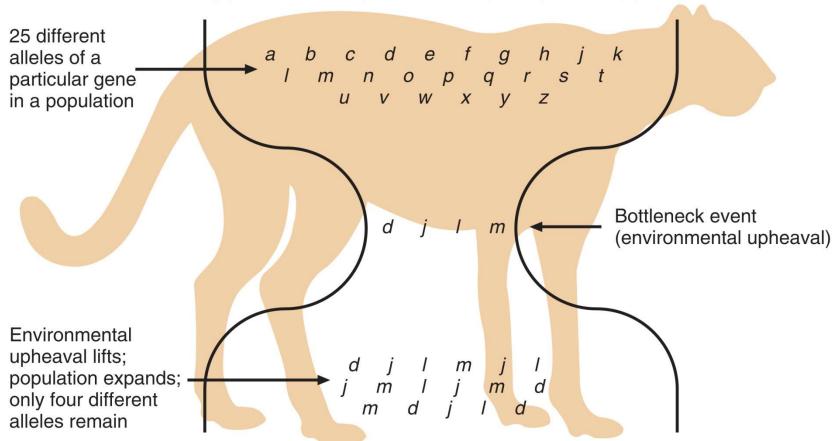

Copyright © The McGraw-Hill Companies, Inc. Permission required for repr	production or display.
--	------------------------

Table 15.5	A Chronology of Eugenics-Related Events	
1883	Sir Francis Galton coins the term <i>eugenics</i> .	
1889	Sir Francis Galton's writings are published in the book Natural Inheritance.	
1896	Connecticut enacts law forbidding sex with a person who has epilepsy or is "feebleminded" or an "imbecile."	
1904	Galton establishes the Eugenics Record Office at the University of London to keep family records.	
1907	First eugenic law in the United States orders sterilization of institutionalized intellectually disabled males and criminal males when experts recommend it.	
1910	Eugenics Record Office founded in Cold Spring Harbor, New York, to collect family and institutional data.	
1924	Immigration Act limits entry into the United States of "idiots, imbeciles, feebleminded, epileptics, insane persons," and restricts immigration to 7 percent of the U.S. population from a particular country according to the 1890 census—keeping out those from southern and eastern Europe.	
1927	Supreme Court (<i>Buck vs. Bell</i>) upholds compulsory sterilization of the intellectually disabled by a vote of 8 to 1, leading to many state laws.	
1934	Eugenic sterilization law of Nazi Germany orders sterilization of individuals with conditions thought to be inherited, including epilepsy, schizophrenia, and blindness, depending upon rulings in Genetic Health Courts.	
1939	Nazis begin killing 5,000 children with birth defects or intellectual disability, then 70,000 "unfit" adults.	
1956	U.S. state eugenic sterilization laws are repealed, but 58,000 people have already been sterilized.	
1965	U.S. immigration laws reformed, lifting many restrictions.	
1980s	California's Center for Germinal Choice established, where Nobel Prize winners can deposit sperm to inseminate selected women.	
1990s	In the U.S., state laws passed to prevent health insurance or employment discrimination based on genotype.	
2003	Many governments recommend certain genetic tests, and enact legislation to prevent genetic discrimination.	
2004	Genocide of black Africans in Sudan.	
2009	U.S. Genetic Information Nondiscrimination Act enacted, but is limited in scope.	

Table 15.5

Eugenics

- Eugenics extends the concept of natural selection and Mendel's laws but does not translate well into practice
- Some people consider modern genetic screening practices eugenic
- However, genetic testing typically aims to prevent or alleviate human suffering Wars may have eugenic consequences

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 15.8

	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.	
Table 15.7	A Chronology of Eugenics-Related Events	
1883	Sir Francis Galton coins the term <i>eugenics</i> .	
1889	Sir Francis Galton's writings are published in the book Natural Inheritance.	
1896	Connecticut enacts law forbidding sex with a person who has epilepsy or is "feebleminded" or an "imbecile."	
1904	Galton establishes the Eugenics Record Office at the University of London to keep family records.	
1907	First eugenic law in the United States orders sterilization of institutionalized mentally retarded males and criminal males when experts recommend it.	
1910	Eugenics Record Office founded in Cold Spring Harbor, New York, to collect family and institutional data.	
1924	Immigration Act limits entry into the United States of "idiots, imbeciles, feebleminded, epileptics, insane persons," and restricts immigration to 7 percent of the U.S. population from a particular country according to the 1890 census—keeping out those from southern and eastern Europe.	
1927	Supreme Court (Buck vs. Bell) upholds compulsory sterilization of the mentally retarded by a vote of 8 to 1, leading to many state laws.	
1934	Eugenic sterilization law of Nazi Germany orders sterilization of individuals with conditions thought to be inherited, including epilepsy, schizophrenia, and blindness, depending upon rulings in Genetic Health Courts.	
1939	Nazis begin killing 5,000 children with birth defects or mental retardation, then 70,000 "unfit" adults.	
1956	U.S. state eugenic sterilization laws are repealed, but 58,000 people have already been sterilized.	
1965	U.S. immigration laws reformed, lifting many restrictions.	
1980s	California's Center for Germinal Choice established, where Nobel Prize winners can deposit sperm to inseminate selected women.	
1990s	In the U.S., state laws passed to prevent health insurance or employment discrimination based on genotype.	
2003	Many governments recommend certain genetic tests, and have legislation to prevent genetic discrimination. In the U.S., protective legislation is still in discussion.	
2004	Genocide of black Africans occurs in Sudan.	
2008	Federal genetic anti-discrimination legislation finalized in U.S.	
2009	Genetic information nondiscrimination act enacted.	