

Human Genetics Concepts and Applications Tenth Edition

RICKI LEWIS

Human Genetics

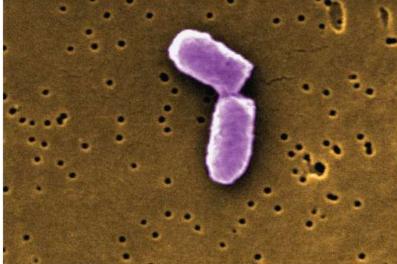
Concepts and Applications

RICKI LEWIS

17Geneticsof Immunity

PowerPoint® Lecture Outlines Prepared by Johnny El-Rady, University of South Florida

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Foreign versus Self

Immune system protects organisms from foreign invaders

- Protection from harmful organisms (pathogens) is based upon the ability to identify foreign molecules as "nonself"
- Foreign may be bacteria, viruses, fungi, tumor, or transplanted cells
- Molecules recognized by the immune system are called **antigens** and are usually protein fragments or carbohydrates

Foreign versus Self

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© CDC/Janice Haney Carr

Figure 17.1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Vol. 40/Corbis RF

Figure 1 Reading 17.1

Genetic Control of Immunity

Genes affect immunity by conferring susceptibility or resistance to infection

A few types of single genes encode antibodies and cytokines that directly attack foreign antigens

Genes also specify the cell surface antigens that mark the body's cells as "self"

Genetic Control of Immunity

Understanding how genes control immunity makes it possible to enhance or redirect the system's ability to fight disease

Mutations can impair immunity causing:

- Immune deficiencies
- Autoimmune disorders
- Allergies
- Cancer

Blood Groups

- Some of the antigens that dot our cell surfaces determine blood types
- We actually have 29 major blood types
- For more than a century, serology typed blood according to the RBC antigens
- A newer way to type blood is to identify the *instructions* (i.e. genes) for these antigens
 - This approach, termed **genotyping**, uses a device called a BLOOD-chip

Copyright © The McGraw-Hi	Hill Companies, Inc. Permission required for reproduction or display. Blood Groups		
Blood Group (M	IM) Description		
MN (111300)	Codominant alleles <i>M</i> , <i>N</i> , and <i>S</i> determine six genotypes and phenotypes. The antigens bind two glycoproteins.		
Lewis (111100)	Allele <i>Le</i> encodes fucosyltransferase (FUT3) that adds an antigen to the sugar fucose, which the product of the <i>H</i> gene places on red blood cells. <i>H</i> gene expression is necessary for the ABO phenotype (see section 5.1). People with <i>LeLe</i> or <i>Lele</i> have the Lewis antigen on red blood cells and in saliva. People of genotype <i>lele</i> do not.		
Secretor (182100)	People with <i>Se</i> allele secrete A, B, and H antigen in body fluids.		

Major Histocompatibility Complex

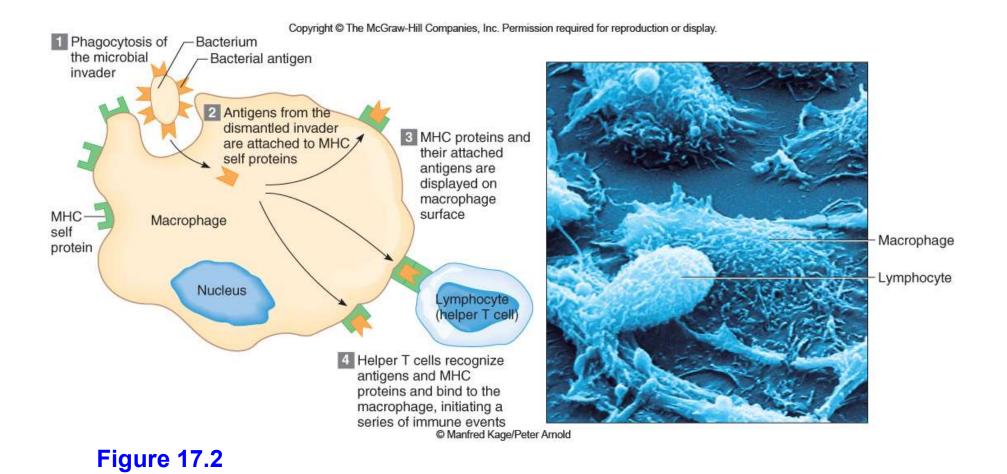
Found on short arm of chromosome 6 Includes about 70 genes Code for cell protein surface features Classified into three functional groups

- Class III genes encode plasma proteins that carry out non-specific immune functions
- Class I and II genes encode human leukocyte antigens (HLA)

Human Leukocyte Antigens (HLA)

- Link sugars to form branched glycoproteins that extend from cell surfaces
- HLA glycoproteins can recognize bacterial and viral proteins, marking them for immune system to target

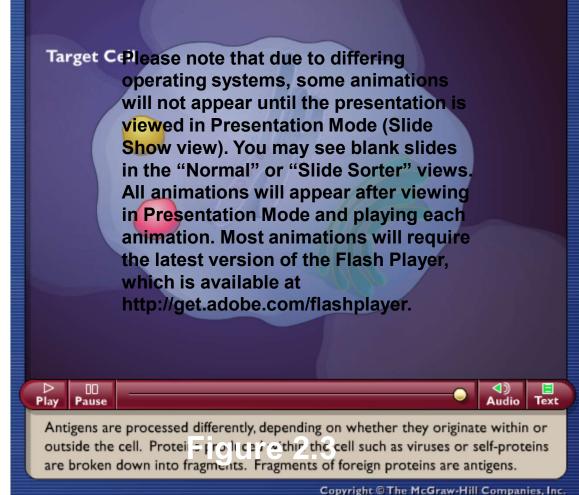
 A process called antigen processing
 Class I are found on all cell types
 Class II are found mostly on antigenpresenting cells


Antigen-Presenting Cells

Cells that bind antigens with HLA glycoproteins

Two main types of antigen-presenting cells are:

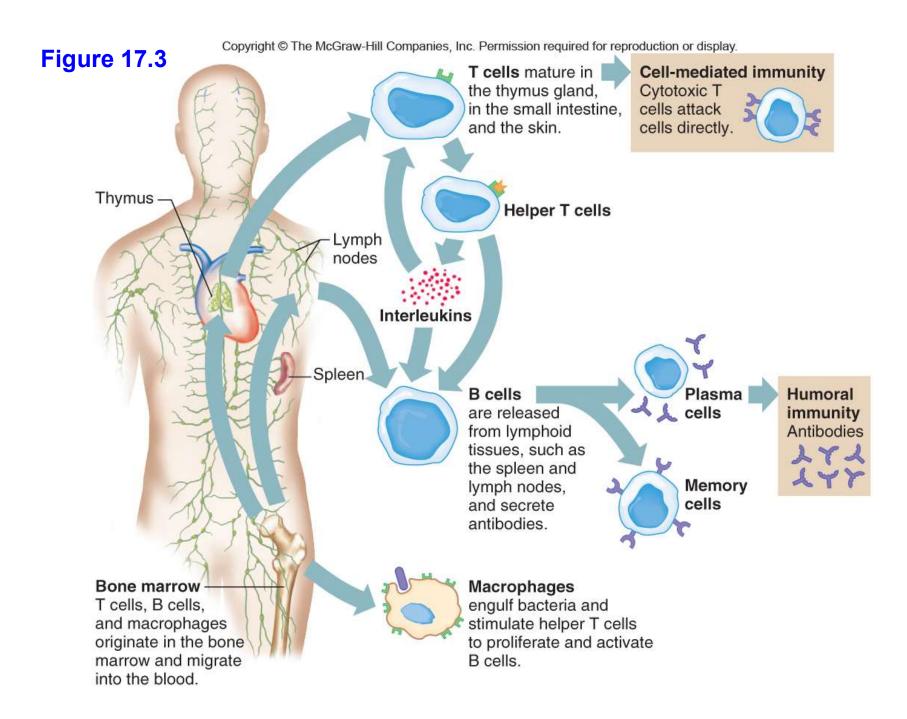
- Macrophages
- T-cells (or T-Lymphocytes)


Antigen-Presenting Cells

11

Antigen Processing Animation

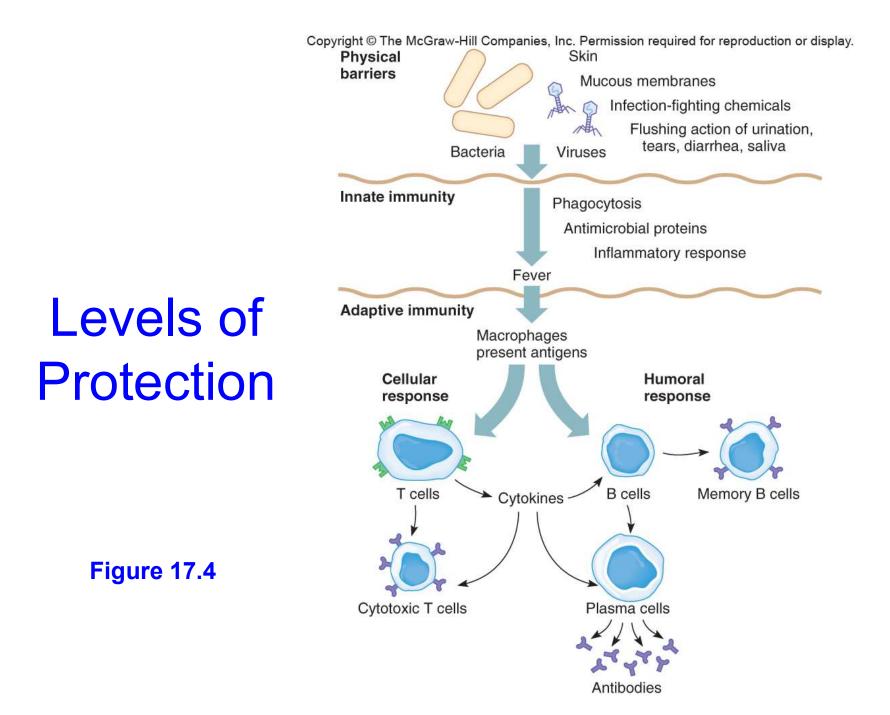
Antigen Processing


HLA Diversity

- Several genes with multiple alleles determine an HLA type
- Genetic diversity at HLA genes is large
- Only 1 in 10,000 unrelated people will share an HLA type by chance at the six major HLA genes
- Matching at least four major HLA genes is needed for most transplants to succeed.
- HLA genes account for about 50% of the genetic impact on immunity

The Human Immune System

A network of vessels called lymphatics and bean-shaped structures called lymph nodes Lymph is the fluid filling the lymph ducts


- Carries macrophages and B- and Tlymphocytes
- Organs involved in production or maturation of immune cells
 - Spleen and Thymus
 - Bone marrow

Immunity

- The immune response attacks pathogens, cancer cells and transplanted cells with two lines of defense
 - Innate immunity is immediate and generalized
 - Adaptive immunity is specific and slower

These act after various physical barriers block pathogens

Physical Barriers

The first line of defense

Examples include:

- Unbroken skin
- Mucous membranes and secretions
- Waving cilia of the respiratory tract
- Flushing effect of tears, saliva, urination, and diarrhea

All of these are non-specific defenses

General defenses found in the body
If pathogen breaches physical barriers produces a rapid broad response
Response time is in minutes
A central part is **inflammation**A process that creates a hostile environment for pathogens

- Sends in phagocytes that engulf and destroy pathogens via **phagocytosis**

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Siology Media/Photo Researchers

Figure 17.5

Collectins

Cytokines

- Interferon = Anti-viral
- Interleukins = Fever-inducing
- Tumor necrosis factor α = Anti-cancer

Cytokines also play a role in adaptive immunity

Complement

- Plasma proteins that assist or complement other defense responses
- Roles of complement proteins include:
 - Puncture bacterial cells
 - Dismantle viruses
 - Trigger histamine release to dilate blood vessels
 - Attract phagocytes

Adaptive Immunity

Requires stimulation

Response time is in days

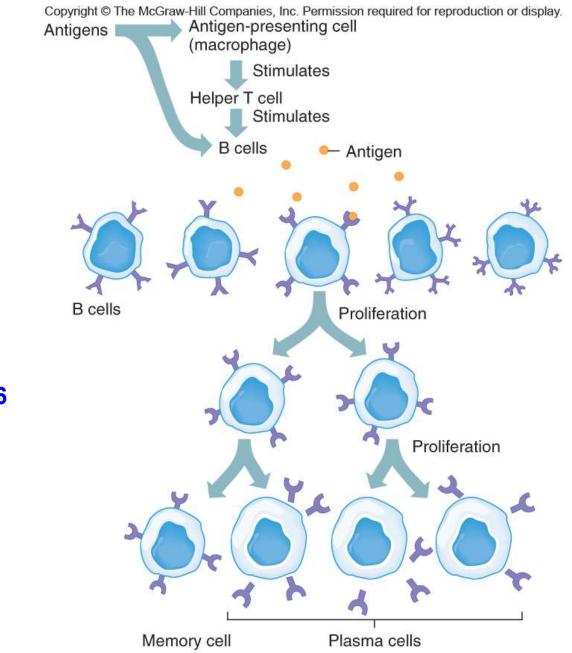
Has three basic characteristics:

- **Diversity**: many different pathogens recognized
- Specificity: distinguishes particular molecules
- **Memory**: responds faster with subsequent exposure
 - **Primary immune response**: reaction to first exposure
 - **Secondary immune response**: reaction to exposure using "memory" of first response

Adaptive Immunity

Two types of response:

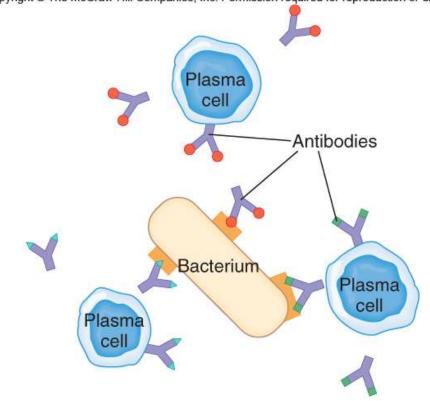
- Humoral immune response


- B cells produce antibodies in response to activation by T cells

- Cellular immune response

- T cells produce cytokines and activate other cells

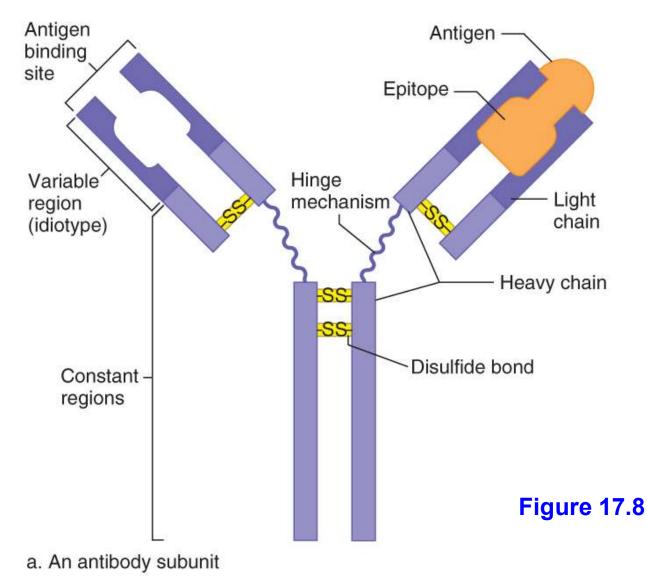
Humoral Immune Response


- 1. Antigen-presenting macrophage activates a helper T cell
- 2. Helper T cell activates a B cell with matching cell surface receptors
- 3. B cells divide to produce plasma cells and memory cells
- 4. Plasma cells secrete antibodies into blood that will recognize the antigen presented.
- Memory cells remain dormant until second exposure when they respond faster and more effectively

A humoral immune response is polyclonal

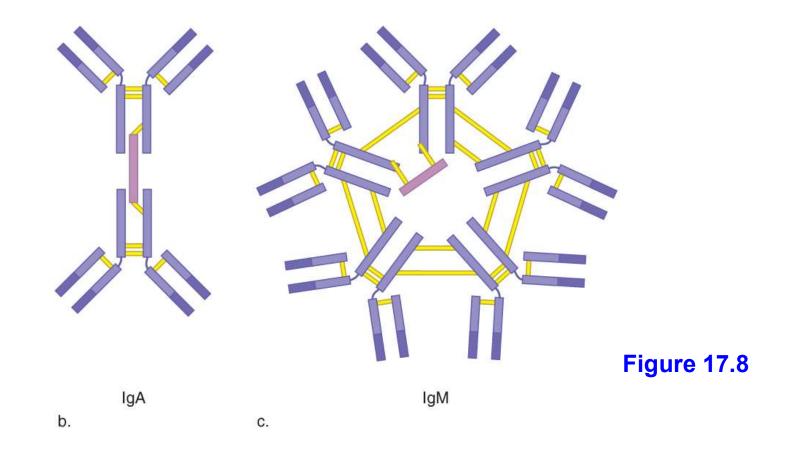
> Different antibody proteins recognize and bind to different features of foreign cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Antibody Structure

Minimally consist of four polypeptide chains

- Two long (heavy) chains
- Two shorter (light) chains


Constant region of each chain is similar
Variable region of each chain is diverse
Antigen binding sites: where antigen binds
Idiotypes: sites in direct contact with antigen
Epitope: portion of the antigen contacting the antibody

Antibody Structure

Antibody Structure

Large antibody molecules might consist of two or five Y-shaped subunits

Antigenic Determinants Animation

Antigenic Determinants (Epitopes)

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the "Normal" or "Slide Sorter" views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

Antigens are macromolecules, usually of molecular weight greater than 10,000, such as proteins and polysaccharides. They are recognized by the immune system as foreign.

Play

00

Pause

Copyright @ The McGraw-Hill Companies, Inc.

<)

Audio

Text

Function of Antibodies

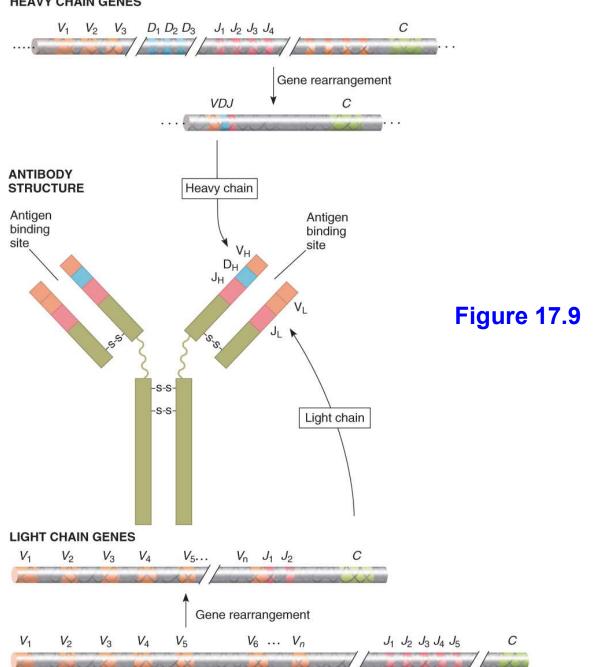
Bind pathogen protein or toxin and inactivates or neutralizes them
Can clump pathogens making them more visible for macrophages
Activate the complement system boosting the innate immune response

In some situations, the antibody response can be harmful

Types of Antibodies

Also called immunoglobulins

Five major types distinguished by location and function


Different antibody types predominate in different stages of an infection

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
Table 17.2		Types of Antibodies		
Type*	Locati	on	Functions	
IgA	Milk, saliva, urine, and tears; respiratory and digestive secretions		Protects against pathogens at points of entry into body	
lgD	On B cells in blood		Stimulates B cells to make other types of antibodies, particularly in infants	
IgE	In secretions with IgA and in mast cells in tissues		Acts as receptor for antigens that cause mast cells to secrete allergy mediators	
lgG	Blood plasma and tissue fluid; passes to fetus		Protects against bacteria, viruses, and toxins, especially in secondary immune response	
lgM	Blood plasma		Fights bacteria in primary immune response; includes anti-A and anti-B antibodies of ABO blood groups	

^{*}The letters A, D, E, G, and M refer to the specific conformation of heavy chains characteristic of each class of antibody.

Creation of Antibody Diversity

- The genome has a limited number of antibody genes
 - However, the human body can shuffle these in many different ways to make a seemingly limitless variety of antibodies
- During early development of B cells, sections of the antibody genes are rearranged along their chromosome
- Rearrangement due to enzymes cutting and pasting different combinations of V (Variable), D (Diversity), and J (Joining) genes creates new versions of the antibody proteins

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **HEAVY CHAIN GENES**

Cellular Immune Response Maturation of T Cells

- T cells must recognize foreign antigens and not recognize self antigens
- Immature T cells, called thymocytes, travel to the thymus and display their cell surface receptors
- The thymus lining displays self antigens
- T cells that bind these self antigens die by apoptosis
- T cells that do not bind the self antigens survive and mature

Types of T cells

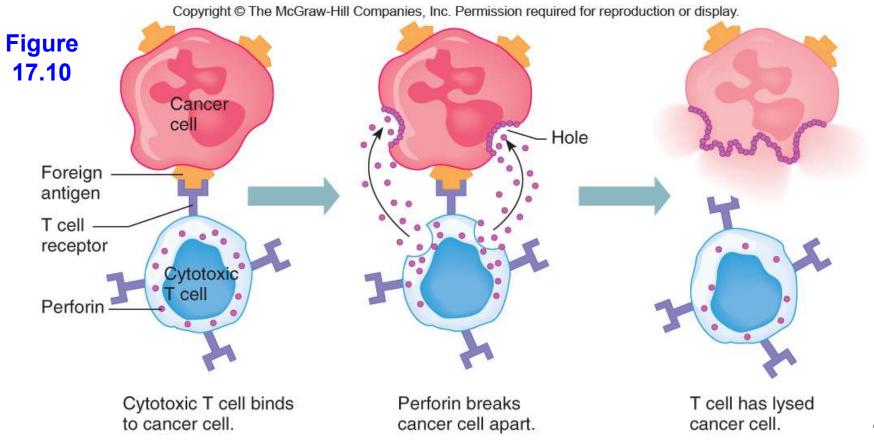
Several types of T cells are distinguished by the types and patterns of receptors on their surface and by their function

- Helper T cells
 - Have CD4 antigens
- Cytotoxic T cells
 - Have CD8 antigens
- Regulatory T cells

Role of Helper T cells

In humoral immune response:

- Recognize antigens presented by macrophages
- Stimulate B cells to produce antibodies


In cellular immune response:

- Secrete cytokines
- Activate cytotoxic T cell

Table 17.3	Types of Cytokines		
Cytokine	Function		
Colony stimulating factors	Stimulate bone marrow to produce lymphocytes		
Interferons	Block viral replication, stimulate macrophages to engulf viruses, stimulate B cells to produce antibodies, attack cancer cells		
Interleukins	Control lymphocyte differentiation and growth, cause fever that accompanies bacterial infection		
Tumor necrosis facto	or Stops tumor growth, releases growth factors, stimulates lymphocyte differentiation, dismantles bacterial toxins		

Cytotoxic T cells

Continuously monitor body cells, recognizing and eliminating virus-infected and tumor cells

Table 17.4	Types of Immune System Cells		
Cell Type	Function		
Macrophage	Presents antigens		
	Performs phagocytosis		
Dendritic cell	Presents antigens		
Mast cell	Releases histamine in inflammation		
	Releases allergy mediators		
B cell	Matures into antibody-producing plasma cell or into memory cell		
T cells			
Helper	Recognizes nonself antigens presented on macrophages		
	Stimulates B cells to produce antibodies		
	Secretes cytokines		
	Activates cytotoxic T cells		
Cytotoxic	Attacks cancer cells and cells infected with viruses upon recognizing antigens		
Natural killer	Attacks cancer cells and cells infected with viruses without recognizing antigens; activates other white blood cells		
Suppressor	Inhibits antibody production		

Table 17.4

Abnormal Immunity

Immune system malfunction may be inherited or acquired

In addition, immunity may be too weak, too strong, or misdirected

Abnormal immune responses may be multifactorial or caused by a mutation in a single gene

Inherited Immune Deficiencies

At least 20 types Affect innate and adaptive immunity

Examples

- Chronic granulomatous disease: Mutation of oxidase enzyme results in neutrophils that cannot kill bacteria

- Severe combined immune deficiency (SCID): Impacts both humoral and cellular immunity due to lack of mature B cells and/or T cells

Inherited Immune Deficiencies

David Vetter had an autosomal recessive form of SCID

- He was born without a thymus gland

- His T cells could not mature and activate B cells Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Bettmann/Corbis

Figure 17.11

Table 17.5	Inherited Immune Deficiencies				
Disease	мім	Inherita	nce' Defect		
Chronic granulomatou disease	ıs 30640	00 ar, AD, Xlr	Abnormal phagocytes can't kill engulfed bacteria		
Immune defect due to absence of thymus	24270	0 ar	No thymus, no T cells		
Neutrophil immuno- deficiency syndrome	60820)3 ar	Deficiencies of T cells, B cells, and neutrophils		
SCID					
Adenosine deamina deficiency	se 10270	0 ar	No T or B cells		
Adenosine deamina deficiency with sens to ionizing radiatior	sitivity	i0 ar	No T, B, or natural killer cells		
IL-2 receptor mutati	on 30040	00 Xlr	No T, B, or natural killer cells		
X-linked lymphoproliferative disease	30824	0 XIr	Absence of protein that enables T cells to bind B cells		

*ar = autosomal recessive

SCID = severe combined immune deficiency

AD = autosomal dominant

XIr = X-linked recessive

Human Immunodeficiency Virus (HIV)

- An infectious virus enters the body with direct contact of bodily fluids
- Infects macrophages, and later, helper T cells
- Virus replicates and bursts out of the helper T cell, killing it
- Loss of helper T-cells prevents B-cell activation
- Infections occur because the immune system not functional

Replicates rapidly, mutates easily, and can hide

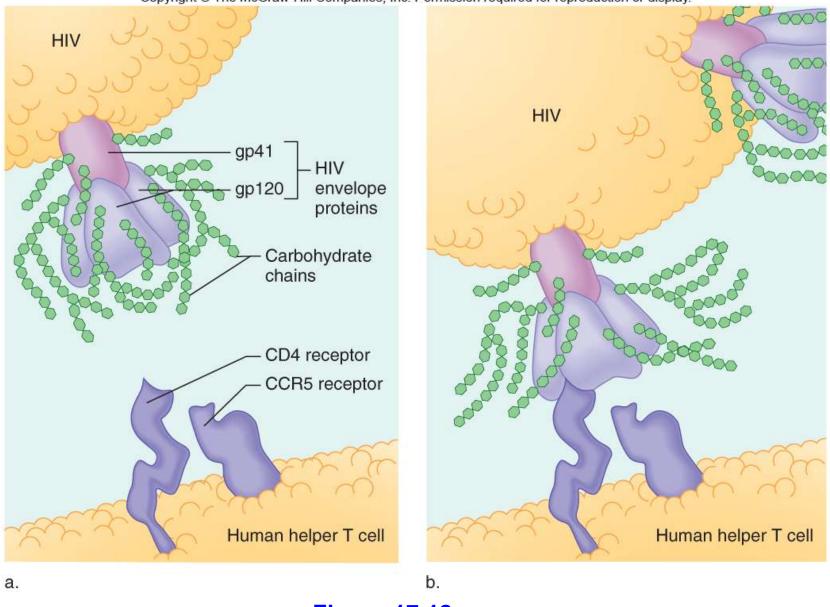
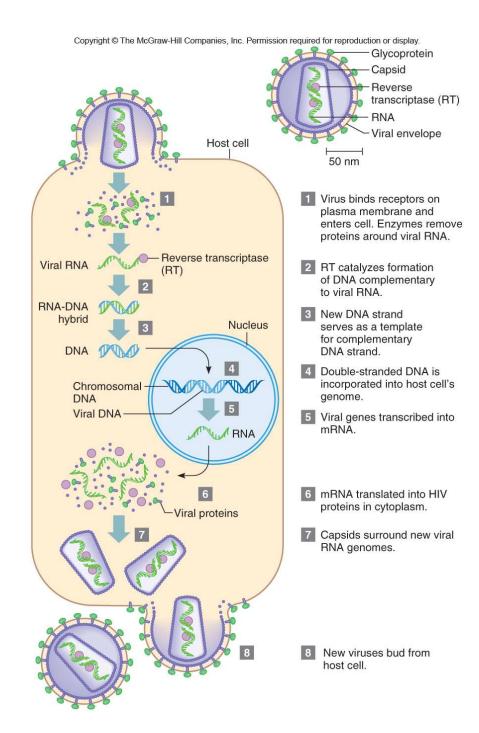



Figure 17.12

48

Figure 17.13

Acquired Immune Deficiency Syndrome (AIDS)

The disease resulting from HIV infection

- The immune system impact of HIV infection has progressed to impairment of immune function
- Due to genetically diverse population of HIV in a human host, treatment requires combination of medication with different actions

Drugs block/inhibit different points of infection

- Entry of virus into T cells
- Replication of viral genetic material
- Processing of viral proteins

Table 17.6	Anti-HIV Drugs		
Drug Type	Mechanism		
Reverse transcriptas inhibitor	se Blocks copying of viral RNA into DNA		
Protease inhibitor	Blocks shortening of certain viral proteins		
Fusion inhibitor	Blocks ability of HIV to bind a cell		
Entry inhibitor	Blocks ability of HIV to enter a cell		

CCR5 Gene

- Encodes for a receptor protein on the cell membrane (co-receptor for HIV)
- Individuals homozygous for a 32-base deletion of CCR5 are resistant to infection
- Heterozygous individuals become infected but stay healthy for several years longer than people that do not have the mutation
- Same mutation may have enabled people to survive the plague in Europe during the Middle Ages

Autoimmunity

Immune system attacks the tissues of an individual's own body

Autoantibodies recognize "self" proteins

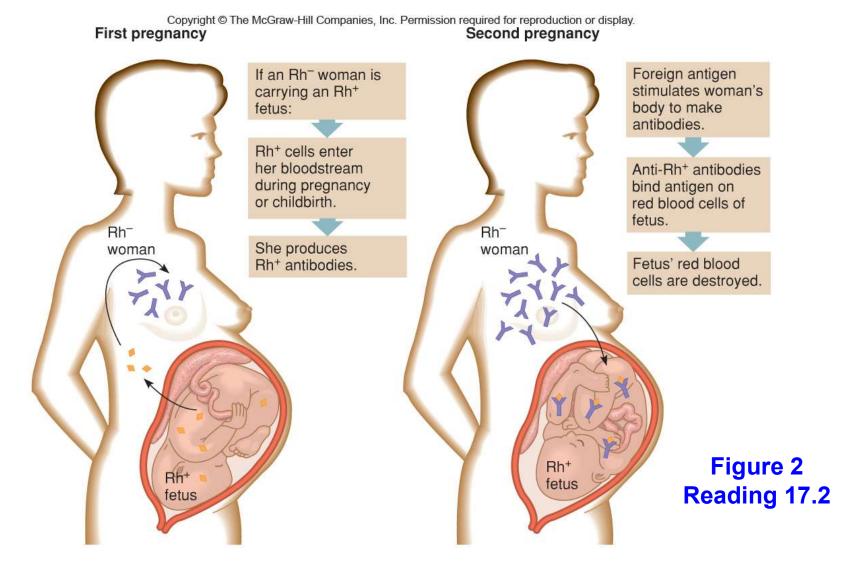
About 5% of the population has an autoimmune disorder

The signs and symptoms reflect the cell types under attack

Autoimmunity

Autoimmunity may arise in several ways:

- Viruses use host proteins on the viral cell surface. These proteins become the target of the immune system, which responds as if they were viral proteins
- Thymocytes that recognize "self" antigens survive instead of self-destructing
- Nonself antigen may coincidentally resemble "self" antigens
- Skewed X inactivation


Table 17.7	Autoimmune Disorders				
Disorder		Symptoms	Autoantibodies against		
Diabetes mellitus (t	ype 1)	Thirst, hunger, weakness, weight loss	Pancreatic beta cells		
Graves disease		Restlessness, weight loss, irritability, increased heart rate and blood pressure	Thyroid gland cells		
Hemolytic anemia		Fatigue, weakness	Red blood cells		
Multiple sclerosis		Weakness, poor coordination, failing vision, disturbed speech	Myelin in the white matter of the central nervous system		
Myasthenia gravis		Muscle weakness	Neurotransmitter receptors on skeletal muscle cells		
Rheumatic fever		Weakness, shortness of breath	Heart valve cells		
Rheumatoid arthritis		Joint pain and deformity	Cells lining joints		
Systemic lupus eryt	hematosus	Red facial rash, fever, weakness, joint pain	Connective tissue		
Ulcerative colitis		Lower abdominal pain	Colon cells		

Rh Incompatibility

Occurs when an Rh⁻ (no Rh antigen) mother has an Rh⁺ (has Rh antigen) child

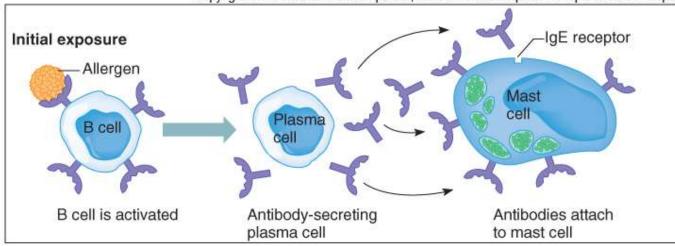
First Rh incompatible pregnancy – Fetal cells recognized as foreign; Mother's immune system attacks fetal cells; Produces a mild reaction, few antibodies present

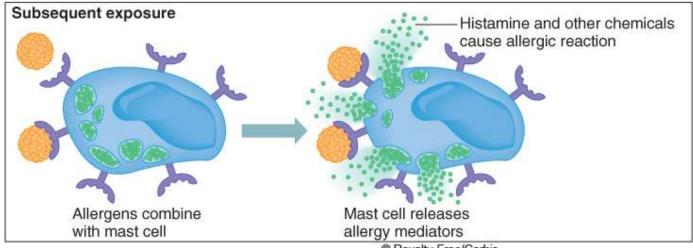
Second Rh incompatible pregnancy – Large response, plentiful antibodies; Destruction of fetal blood cells, much damage

RhoGAM prevents formation of anti-Rh antibodies

Allergy

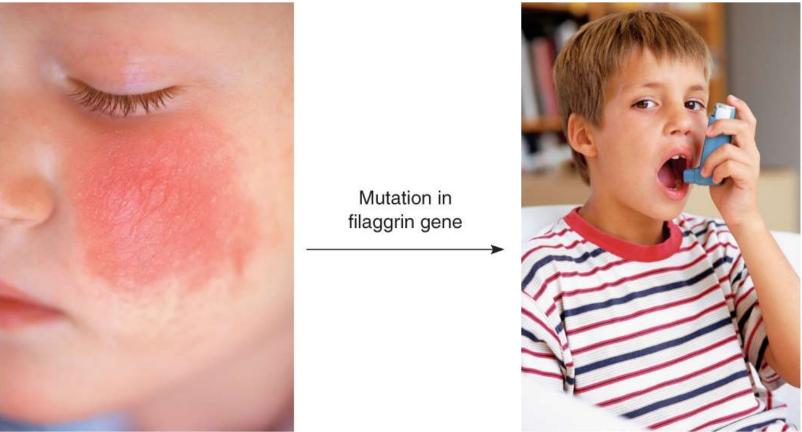
Immune response to a non-threatening foreign substance called an **allergen** Size of allergens may determine type of allergic response


- Larger (e.g., grass pollen) produces hay fever
- Smaller (e.g., cat dander, dust mites) trigger asthma


Asthma is a chronic disease

- Contraction of the airways, inflammation and mucus production block air flow

Allergic Response


- Humoral and cellular immunity are involved IgE antibodies are made and bind mast cells Mast cells release allergy mediators like histamine and heparin that cause inflammation, runny eyes and nose, rashes and asthma
- Allergens activate a class of helper T cells that release cytokines
- Severe allergic reaction throughout the body is called **anaphylatic shock**

© Royalty-Free/Corbis

Figure 17.14

(left): © Loisjoy Thurstun/Bubbles Photolibrary/Alamy; (right): © Pixtal/age fotostock

Figure 17.15

Allergies Animation

IgE-mediated (Type I) Hypersensitivity

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the "Normal" or "Slide Sorter" views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

Some people develop an allergic reaction or hypersensitivity when exposed to substances such as dust, pollens, animal dander or penicillin.

Play

00

Pause

<)

Audio

Text

Vaccination

- A vaccine uses antigens from a pathogen to invoke immunity before an individual has been exposed to the pathogen
- Antigens are chosen to be harmless alone
- Ability to respond rapidly to subsequent exposure prevents infection to a degree that would cause disease
- Vaccine technology dates back to 11th century China
- Edward Jenner used cowpox as a vaccine for smallpox

Vaccination

Smallpox has not naturally infected a human since 1977

- So vaccination are now unnecessary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 17.16

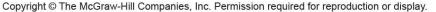
New Methods

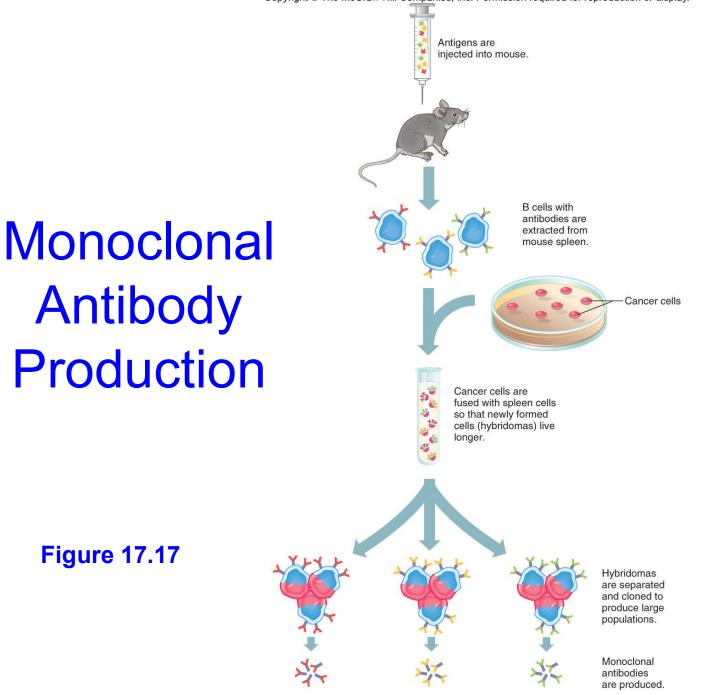
Most vaccines are injections

New delivery methods include nasal sprays and genetically modified fruits and vegetables

A banana can become a vaccine

- Foreign antigens stimulate phagocytes to "present" antigens to nearby T cells
- T cells stimulate B cells to make IgA antibodies
- They coat the small intestine and protect against food-borne pathogens


Immunotherapy


Medical treatment used to amplify or redirect the immune response

Monoclonal antibodies (MAb)

- Useful for detecting and targeting one particular antigen
- In 1975, British researchers devised a technology which mass-produces a single B cell

- Thus, preserving its specificity and amplifying its antibody type

Monoclonal Antibody Animation

Monoclonal Antibody Production

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the "Normal" or "Slide Sorter" views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/ffashplayer.

Monoclonal antibody preparations contain only one type of antibody, derived from a single cloned B cell.

00

Pause

Play

Copyright © The McGraw-Hill Companies, Inc.

Audio

Text

Uses of Monoclonal Antibodies

Basic research and disease diagnosis Home pregnancy test strips

- Contain anti-hCG monoclonal antibody
- If hCG is present in the urine it binds and changes the color of the test strip

Herceptin

- A monoclonal antibody-based drug
- Blocks receptors on breast cancer cells
- Prevents reception of cell-division signal

Cytokines Boost Cellular Immunity

Cytokines are used to treat a variety of conditions

Examples

- Interferon: Cancer and multiple sclerosis
- Interleukin-2: Kidney cancer recurrence

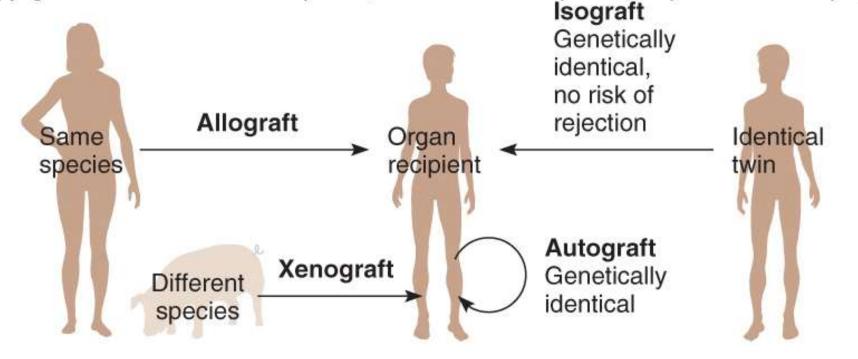
- Colony stimulating factor: Boosts WBC levels in individuals with AIDS

Transplantation

- Organs are moved from one individual to another
- Hearts, kidneys, livers, lungs, corneas, pancreases, skin, and bone marrow are routinely transplanted
 - Sometimes, several organs at a time

Today, thousands of transplants are performed annually and recipients gain years of life

Successful transplants lie in genetics


Transplantation

Types of transplantation are defined by the relationship between the donor and recipient:

- Autograft: from one person to self
- **Isograft**: from identical twin
- Allograft: members of same species
- Xenograft: from another species

Transplantation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 17.18

Graft Rejection

The immune system reacts to grafted tissue recognized as foreign by trying to destroy it **Hyperacute rejection reaction**

- A severe form of graft reaction in which the blood supply to the graft tissue is cut off

Graft versus host disease

- Occurs in bone marrow transplants
- Immune cells of the grafted bone marrow recognize host body as foreign and attack it

Genomic View of Immunity

Sequencing genomes of pathogens

- Can help us understand how they infect, and aid in development of treatments

Crowd diseases

- Spread rapidly through unexposed populations
- Examples: smallpox, measles, pertussis, typhus, influenza, and SARS

Bioweapons

- Bacteria and viruses have been used throughout history as weapons
- In their natural state or genetically-manipulated